7 research outputs found

    Towards Assume-Guarantee Profiles for Autonomous Vehicles

    Get PDF
    Rules or specifications for autonomous vehicles are currently formulated on a case-by-case basis, and put together in a rather ad-hoc fashion. As a step towards eliminating this practice, we propose a systematic procedure for generating a set of supervisory specifications for self-driving cars that are 1) associated with a distributed assume-guarantee structure and 2) characterizable by the notion of consistency and completeness. Besides helping autonomous vehicles make better decisions on the road, the assume-guarantee contract structure also helps address the notion of blame when undesirable events occur. We give several game-theoretic examples to demonstrate applicability of our framework

    Towards Assume-Guarantee Profiles for Autonomous Vehicles

    Get PDF
    Rules or specifications for autonomous vehicles are currently formulated on a case-by-case basis, and put together in a rather ad-hoc fashion. As a step towards eliminating this practice, we propose a systematic procedure for generating a set of supervisory specifications for self-driving cars that are 1) associated with a distributed assume-guarantee structure and 2) characterizable by the notion of consistency and completeness. Besides helping autonomous vehicles make better decisions on the road, the assume-guarantee contract structure also helps address the notion of blame when undesirable events occur. We give several game-theoretic examples to demonstrate applicability of our framework

    Robust Estimation Framework with Semantic Measurements

    Get PDF
    Conventional simultaneous localization and mapping (SLAM) algorithms rely on geometric measurements and require loop-closure detections to correct for drift accumulated over a vehicle trajectory. Semantic measurements can add measurement redundancy and provide an alternative form of loop closure. We propose two different estimation algorithms that incorporate semantic measurements provided by vision-based object classifiers. An a priori map of regions where the objects can be detected is assumed. The first estimation framework is posed as a maximum-likelihood problem, where the likelihood function for semantic measurements is derived from the confusion matrices of the object classifiers. The second estimation framework is comprised of two parts: 1) a continuous-state estimation formulation that includes semantic measurements as a form of state constraints and 2) a discrete-state estimation formulation used to compute the certainty of object detection measurements using a Hidden Markov Model (HMM). The advantages of incorporating semantic measurements in these frameworks are demonstrated in numerical simulations. In particular, the proposed estimation algorithms improve upon the robustness and accuracy of conventional SLAM algorithms

    Rules of the Road: Towards Safety and Liveness Guarantees for Autonomous Vehicles

    Get PDF
    The ability to guarantee safety and progress for all vehicles is vital to the success of the autonomous vehicle industry. We present a framework for the distributed control of autonomous vehicles that is safe and guarantees progress for all agents. In this paper, we first introduce a new game paradigm which we term the quasi-simultaneous discrete-time game. We then define an Agent Protocol agents must use to make decisions in this quasi-simultaneous discrete-time game setting. According to the protocol, agents first select an intended action and then each agent determines whether it can take its intended action or not, given its proposed intention and the intentions of nearby agents. The protocol so defined will ensure safety under all traffic conditions and liveness for all agents under "sparse" traffic conditions. These guarantees, however, are predicated on the premise that all agents are operating with the aforementioned protocol. We provide proofs of correctness of the protocol and validate our results in simulation

    Robust Estimation Framework with Semantic Measurements

    Get PDF
    Conventional simultaneous localization and mapping (SLAM) algorithms rely on geometric measurements and require loop-closure detections to correct for drift accumulated over a vehicle trajectory. Semantic measurements can add measurement redundancy and provide an alternative form of loop closure. We propose two different estimation algorithms that incorporate semantic measurements provided by vision-based object classifiers. An a priori map of regions where the objects can be detected is assumed. The first estimation framework is posed as a maximum-likelihood problem, where the likelihood function for semantic measurements is derived from the confusion matrices of the object classifiers. The second estimation framework is comprised of two parts: 1) a continuous-state estimation formulation that includes semantic measurements as a form of state constraints and 2) a discrete-state estimation formulation used to compute the certainty of object detection measurements using a Hidden Markov Model (HMM). The advantages of incorporating semantic measurements in these frameworks are demonstrated in numerical simulations. In particular, the proposed estimation algorithms improve upon the robustness and accuracy of conventional SLAM algorithms
    corecore